Feature: Pause and resume ML training jobs at epoch boundaries
Status: β
IMPLEMENTATION COMPLETE - Ready for Testing
Date: 2025-11-02
Successfully implemented pause/resume functionality for training jobs in the Heimdall ML pipeline. Training jobs can now be temporarily paused at epoch boundaries and later resumed from the exact state where they left off, preserving all model, optimizer, and scheduler state.
File: db/migrations/020-add-pause-resume-training.sql
pause_checkpoint_path column to store checkpoint location'paused' stateFile: services/backend/src/models/training.py:25
PAUSED = "paused" to TrainingStatus enumFile: services/training/src/tasks/training_task.py
Resume Logic (lines 177-213):
resume_epoch + 1Pause Detection (lines 452-503):
Status: Complete with full state preservation
File: services/backend/src/routers/training.py
POST /v1/training/jobs/{job_id}/pause (lines 424-501):
POST /v1/training/jobs/{job_id}/resume (lines 504-594):
Status: Complete with error handling and WebSocket integration
File: frontend/src/services/api/training.ts
TrainingJob type to include 'paused' status (line 19)pauseTrainingJob(jobId) function (lines 122-125)resumeTrainingJob(jobId) function (lines 127-130)File: frontend/src/pages/TrainingDashboard.tsx
Event Handlers (lines 246-268):
handlePauseJob() - Confirms with user, calls pause APIhandleResumeJob() - Confirms with user, calls resume APIStatus Badge (line 375):
paused: { variant: 'dark', icon: <Pause size={14} /> }Action Buttons (lines 560-590):
Status: Complete with proper visibility logic
total_epochs = 0checkpoints/{job_id}/best_model.pthcheckpoints/{job_id}/pause_checkpoint.pthdb/migrations/020-add-pause-resume-training.sql - New migrationservices/backend/src/models/training.py - Added PAUSED enumservices/training/src/tasks/training_task.py - Resume + pause logicservices/backend/src/routers/training.py - Pause/resume endpointsfrontend/src/services/api/training.ts - Frontend API functionsfrontend/src/pages/TrainingDashboard.tsx - UI buttons and statusFile: scripts/test_pause_resume.py
Comprehensive test script that:
Run: python scripts/test_pause_resume.py
File: docs/TESTING.md
Comprehensive test plan covering:
docker exec -i heimdall-postgres psql -U heimdall_user -d heimdall \
< db/migrations/020-add-pause-resume-training.sql
docker compose restart backend training
# Automated test
python scripts/test_pause_resume.py
# Manual testing
# Follow test plan in docs/TESTING.md
| Component | Status | Notes |
|---|---|---|
| Database Schema | β Complete | Migration applied |
| Backend Models | β Complete | PAUSED status enum added |
| Training Task | β Complete | Resume & pause logic implemented |
| Backend API | β Complete | Endpoints with validation |
| Frontend API | β Complete | TypeScript types & functions |
| Frontend UI | β Complete | Buttons, handlers, status badge |
| Documentation | β Complete | Test plan & implementation docs |
| Testing | β³ Pending | Ready to test |
Overall Progress: 7/8 complete (87.5%)
# Full training state preserved in pause checkpoint
pause_checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_val_loss': best_val_loss,
'best_epoch': best_epoch,
'patience_counter': patience_counter,
'train_loss': train_loss,
'val_loss': val_loss,
'val_rmse': val_rmse,
'config': config
}
# Resume from pause checkpoint
if pause_checkpoint_path:
checkpoint = torch.load(checkpoint_buffer)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
resume_epoch = checkpoint['epoch']
best_val_loss = checkpoint.get('best_val_loss', float('inf'))
# ... restore all state
# Training continues from next epoch
for epoch in range(resume_epoch + 1, epochs + 1):
# ... training loop
# Check for pause request after each epoch
with db_manager.get_session() as session:
status_result = session.execute(
text("SELECT status FROM heimdall.training_jobs WHERE id = :job_id"),
{"job_id": job_id}
).fetchone()
if status_result[0] == 'paused':
# Save checkpoint and exit gracefully
save_pause_checkpoint()
return {"status": "paused", "paused_at_epoch": epoch}
// Pause button only for running training jobs (not synthetic data)
{job.status === 'running' && !isSyntheticDataJob(job) && (
<Button onClick={() => handlePauseJob(job.id)}>
<Pause size={14} />
</Button>
)}
// Resume button only for paused jobs
{job.status === 'paused' && (
<Button onClick={() => handleResumeJob(job.id)}>
<Play size={14} />
</Button>
)}
Implementation By: OpenCode AI Assistant
Reviewed By: _____
Tested By: _____
Date: 2025-11-02