heimdall

Pause/Resume Training Jobs - Implementation Complete

Feature: Pause and resume ML training jobs at epoch boundaries
Status: βœ… IMPLEMENTATION COMPLETE - Ready for Testing
Date: 2025-11-02


πŸ“‹ Summary

Successfully implemented pause/resume functionality for training jobs in the Heimdall ML pipeline. Training jobs can now be temporarily paused at epoch boundaries and later resumed from the exact state where they left off, preserving all model, optimizer, and scheduler state.


βœ… What Was Implemented

1. Database Layer βœ…

File: db/migrations/020-add-pause-resume-training.sql

2. Backend Models βœ…

File: services/backend/src/models/training.py:25

3. Training Task Logic βœ…

File: services/training/src/tasks/training_task.py

Resume Logic (lines 177-213):

Pause Detection (lines 452-503):

Status: Complete with full state preservation

4. Backend API Endpoints βœ…

File: services/backend/src/routers/training.py

POST /v1/training/jobs/{job_id}/pause (lines 424-501):

POST /v1/training/jobs/{job_id}/resume (lines 504-594):

Status: Complete with error handling and WebSocket integration

5. Frontend API Service βœ…

File: frontend/src/services/api/training.ts

6. Frontend UI βœ…

File: frontend/src/pages/TrainingDashboard.tsx

Event Handlers (lines 246-268):

Status Badge (line 375):

Action Buttons (lines 560-590):

Status: Complete with proper visibility logic


🎯 Key Design Decisions

  1. Pause Timing: At epoch boundary (graceful, not mid-batch)
    • Prevents data corruption
    • Ensures clean state preservation
    • User receives informative message about timing
  2. Scope: Training jobs only (excludes synthetic data generation)
    • Synthetic data jobs have total_epochs = 0
    • These jobs are typically faster and don’t benefit from pause/resume
  3. Checkpoint Strategy: Separate pause checkpoint from best model checkpoint
    • Best model: checkpoints/{job_id}/best_model.pth
    • Pause checkpoint: checkpoints/{job_id}/pause_checkpoint.pth
    • Prevents confusion between model checkpoints and pause state
  4. Resume Behavior: Creates new Celery task with same job_id
    • Allows clean restart of worker process
    • Loads full training state from checkpoint
    • Preserves job history and metrics
  5. State Preservation: Full training state saved in pause checkpoint
    • Model weights
    • Optimizer state (Adam momentum, etc.)
    • Learning rate scheduler state
    • Best validation loss and epoch tracking
    • Early stopping patience counter
    • Training configuration

πŸ“ Files Modified

  1. βœ… db/migrations/020-add-pause-resume-training.sql - New migration
  2. βœ… services/backend/src/models/training.py - Added PAUSED enum
  3. βœ… services/training/src/tasks/training_task.py - Resume + pause logic
  4. βœ… services/backend/src/routers/training.py - Pause/resume endpoints
  5. βœ… frontend/src/services/api/training.ts - Frontend API functions
  6. βœ… frontend/src/pages/TrainingDashboard.tsx - UI buttons and status

πŸ§ͺ Testing

Automated Test Script

File: scripts/test_pause_resume.py

Comprehensive test script that:

  1. Creates a training job
  2. Waits for it to start running
  3. Pauses at epoch 2+
  4. Verifies pause checkpoint
  5. Resumes training
  6. Verifies continuation from correct epoch
  7. Waits for completion

Run: python scripts/test_pause_resume.py

Manual Test Plan

File: docs/TESTING.md

Comprehensive test plan covering:


πŸš€ Next Steps

1. Apply Migration (βœ… DONE)

docker exec -i heimdall-postgres psql -U heimdall_user -d heimdall \
  < db/migrations/020-add-pause-resume-training.sql

2. Restart Services (βœ… DONE)

docker compose restart backend training

3. Run Tests

# Automated test
python scripts/test_pause_resume.py

# Manual testing
# Follow test plan in docs/TESTING.md

4. Verify in UI


πŸ“Š Implementation Status

Component Status Notes
Database Schema βœ… Complete Migration applied
Backend Models βœ… Complete PAUSED status enum added
Training Task βœ… Complete Resume & pause logic implemented
Backend API βœ… Complete Endpoints with validation
Frontend API βœ… Complete TypeScript types & functions
Frontend UI βœ… Complete Buttons, handlers, status badge
Documentation βœ… Complete Test plan & implementation docs
Testing ⏳ Pending Ready to test

Overall Progress: 7/8 complete (87.5%)


πŸŽ“ Implementation Highlights

Robust State Management

# Full training state preserved in pause checkpoint
pause_checkpoint = {
    'epoch': epoch,
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'scheduler_state_dict': scheduler.state_dict(),
    'best_val_loss': best_val_loss,
    'best_epoch': best_epoch,
    'patience_counter': patience_counter,
    'train_loss': train_loss,
    'val_loss': val_loss,
    'val_rmse': val_rmse,
    'config': config
}

Clean Resume Logic

# Resume from pause checkpoint
if pause_checkpoint_path:
    checkpoint = torch.load(checkpoint_buffer)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
    resume_epoch = checkpoint['epoch']
    best_val_loss = checkpoint.get('best_val_loss', float('inf'))
    # ... restore all state
    
# Training continues from next epoch
for epoch in range(resume_epoch + 1, epochs + 1):
    # ... training loop

Graceful Pause Detection

# Check for pause request after each epoch
with db_manager.get_session() as session:
    status_result = session.execute(
        text("SELECT status FROM heimdall.training_jobs WHERE id = :job_id"),
        {"job_id": job_id}
    ).fetchone()
    
if status_result[0] == 'paused':
    # Save checkpoint and exit gracefully
    save_pause_checkpoint()
    return {"status": "paused", "paused_at_epoch": epoch}

User-Friendly UI

// Pause button only for running training jobs (not synthetic data)
{job.status === 'running' && !isSyntheticDataJob(job) && (
  <Button onClick={() => handlePauseJob(job.id)}>
    <Pause size={14} />
  </Button>
)}

// Resume button only for paused jobs
{job.status === 'paused' && (
  <Button onClick={() => handleResumeJob(job.id)}>
    <Play size={14} />
  </Button>
)}

πŸ› Known Limitations

  1. Pause Timing: Not immediate, happens at epoch boundary
    • This is intentional to preserve data integrity
    • User is informed via message
  2. Scope: Only training jobs, not synthetic data generation
    • Synthetic data jobs are typically fast
    • Would add unnecessary complexity
  3. Single Pause Checkpoint: Only one pause checkpoint per job
    • Previous pause checkpoints are overwritten
    • This is sufficient for the use case

πŸ“š References


Implementation By: OpenCode AI Assistant
Reviewed By: _____
Tested By: _____
Date: 2025-11-02